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1.0 Introduction 

1.1 Statement of Purpose 

MMFX is a new type of steel being used in reinforced concrete applications. 

Providing much greater strength than conventional Grade 60 steel, MMFX is 

uncoated steel that varies from conventional steel in its microstructure. Attractive 

benefits of MMFX include corrosion resistance and ability to retain ductility with 

increased strength. Designers have yet to take full advantage of the material’s 

greater stress capacity in general structural applications. The American Concrete 

Institute (ACI) building code limits maximum design stress to 80 ksi, 

approximately half of the strength of MMFX reinforcement. From a designer’s 

standpoint, less steel could be used if the ACI stress limitation could be increased. 

Even though the unit cost of MMFX steel is higher than conventional steel, the 

cost could be offset by the reduction in area needed. 

To realize the benefits of high-strength steel, data is needed to extend knowledge 

of the behavior of such steel beyond the range of Grade 60 to 80 that are 

currently used. In this study, the behavior of MMFX in splices within reinforced 

concrete beams was examined. Splices are needed when two reinforcing bars 

overlap each other to provide continuity of reinforcement. Force carried by the 

bars increases as splice length increases, until the yield stress of the steel is 

reached. At that point, no additional increase in bar force can be realized. The 

design philosophy is that bars should yield before the splice region fails. The 

intent was to determine if high-strength MMFX bars could be designed as 

conventional Grade 60 steel bars are designed. 

The study reported here supplemented a large study of splices sponsored by 

MMFX Corporation and conducted at the University of Texas at Austin (UT), 

North Carolina State University (NCSU), and Kansas University (KU). At UT, 29 

beams were tested and are being reported by Glass and Hoyt (Glass, 2006). The 

variables include bar size, concrete compressive strength, cover and spacing, 
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confinement (transverse reinforcement), and splice lengths. While Glass and 

Hoyt tested beams with various splice lengths, the minimum splice length 

permitted by ACI (12 in.) was not examined. In this study, several additional 

beams were tested to examine the capacity of splices with minimum lengths. 

Observing the behavior of MMFX bars in short splice regions provided 

interesting data regarding the appropriateness of designing high-strength steel 

reinforced members with a code intended for use in lower-strength applications. 

Design recommendations were then made based on the resulting information. 
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2.0 Literature Review 

2.1 Material Properties of MMFX steel 

Micro-Composite Multi-Structural Formable (MMFX) steel was developed to 

provide more resistance to corrosion than conventional Grade 60 Steel. Problems 

arise within conventional steel at a microstructural level due to material 

composition. Typical carbon steels are composed of carbides and ferrites, which 

are “chemically dissimilar materials” that destroy the steel from the inside out. 

The formations of these “microgalvanic cells,” which drive the corrosive reaction, 

are exacerbated in moist environments (MMFX, 2005). Minimizing microgalvanic 

cell formation, MMFX is composed of austenite and martensite, and is thus 

practically free of carbides (Dawood). The result is steel that is reported to be five 

times as corrosion resistant than Grade 60 steel (MMFX, 2005). 

In addition to increased resistance to deterioration, the unique material 

composition of MMFX results in steel that is approximately two to three times as 

strong in tension as conventional Grade 60 steel that exhibits a yield stress at 

about 60 ksi (MMFX, 2005; Dawood). While carbon steels can be designed to 

have higher strength than Grade 60 steel, this increased strength is realized at the 

cost of ductility. MMFX achieves its greater strength and retains toughness, 

resulting in steel that exhibits ductile behavior (MMFX, 2005). However, MMFX 

does not exhibit a well-defined yield stress. As stress increases within MMFX 

steel bars, the stiffness of the bars remains fairly constant and then gradually 

lessens and the stress remains at a nearly constant level until failure occurs. Lack 

of a well-defined yield stress creates difficulty when designing with MMFX, as 

will be discussed later (Section 2.2). Because high strains are reached, larger crack 

widths will be developed. Questions regarding serviceability will need to be 

considered.      
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2.2 Design Considerations Established by ACI 

As established in Section 9.4 (Design Strength for Reinforcement) of ACI 318-

05, the design values for the yield stress of longitudinal and transverse reinforcing 

steel are limited to 80 ksi (ACI Committee 318, 2004). Consequently, the 

maximum value of stress allowed for designing members reinforced with MMFX 

will be significantly less than the actual maximum values of stress demonstrated 

in tensile strength tests. More recent design recommendations, regarding splice 

lengths and stress levels within the splice region of bars at failure, have been 

published by ACI Committee 408 (2003).  

Regarding the determination of splice lengths in reinforced concrete members, 

empirical expressions have been developed from test results, as an accurate 

mechanics-based procedure has not yet been derived for development and splice 

strength (ACI Committee 408, 2003). All relevant equations can be found in 

Appendix A of this thesis. The failure stresses of spliced bars predicted by ACI 

318-05 and ACI 408 were then compared to the actual failure stresses 

experienced during experimental testing to determine the accuracy of these 

predicted values.  

2.3 Design Considerations for MMFX Steel 

When designing concrete members reinforced with MMFX steel, the equations 

established by the American Concrete Institute (ACI) are intended to apply to 

steel with yield strength up to 80 ksi. Because MMFX can withstand stresses of 

approximately 160 ksi (Figure 1), the limit imposed by ACI is conservative with 

respect to strength. On the other hand, since MMFX does not exhibit a well-

defined yield plateau, it is less ductile than conventional Grade 60 steel. For this 

reason, the 0.2% method for finding yield stress is inappropriate for MMFX and 

it is suggested that ACI limitations regarding yield stress and strain not be used. 

Rather, the actual stress-strain relationship, determined by tensile strength tests of 
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MMFX, should be used when available (Dawood). Experimental testing has 

provided typical stress-strain relationships that have been generalized into an 

exponential curve fit. This provided a formula that predicts the stress in the 

MMFX bar at failure, as discussed in Section 2.4 below. 
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Figure 1: Stress-Strain Behavior of #5 and 

#8 MMFX Bars (Glass, 2006) 

Also illustrating the marked difference in the modulus of elasticity (Es) of the two 

materials, Figure 1 shows that Grade 60 steel has a steeper, more linear modulus 

than that of MMFX. As discussed further in Section 2.4, MMFX does not exhibit 

strength and ductility characteristics like that of conventional Grade 60 steel. 

Therefore, data is needed to determine how MMFX-reinforced concrete 

members perform when designed with ACI equations, which are intended for use 

with steel subjected to stresses under 80 ksi. 

2.4 Coordinated Study of MMFX Bar Splices  

At the University of Texas at Austin (UT), North Carolina State University 

(NCSU), and Kansas University (KU), coordinated projects are currently 

underway to study splices with MMFX steel. Parameters such as concrete cover, 

GRADE 60 STEEL 

MMFX 

WELL-DEFINED 
YIELD PLATEAU 



 

6 

concrete compressive strength, size of longitudinal bars, and amount of 

conventional transverse reinforcement have been shown to significantly affect the 

bond strength of reinforcing bars. Therefore, the coordinated study was designed 

to permit large variation of these parameters. By combining test data from the 

three research groups, the database on high-strength reinforcement will be 

significantly expanded (Rizkalla, 2006).  

Before construction of the beams began, the specimens were first designed using 

material properties and equations established by the American Concrete 

Institute’s (ACI) Building Code Requirements. However, the application of 

expressions involving the stress in tension steel is inappropriate, due to 

discrepancies between ACI’s maximum allowable tensile strength (80 ksi) and the 

actual ultimate strength of MMFX steel (~160 ksi). Further complicating the 

matter, MMFX steel does not exhibit a well-defined yield plateau when tested in 

tension. Therefore, it is suggested that an exponential curve be fitted to the 

resulting data of tension tests, which describe the relationship between stress and 

strain to failure. Derived from tension tests conducted at UT by Glass, the 

exponential curve fit for #5 and #8 MMFX bars is:  

fMMFX = 156(1 – e-220εMMFX) 

where fMMFX is the stress and εMMFX is the strain in the MMFX bar. As seen in 

Figure 1, these tension tests also confirmed that MMFX bars exhibit an ultimate 

strength nearly twice that of Grade 60 steel, as the MMFX bars consistently failed 

at 161 ± 1 ksi (Glass, 2006).   

As ACI 408 states in the report, Bond and Development of Straight Reinforcing Bars in 

Tension, bond force in Grade 60 longitudinal bars is increased when parameters, 

such as concrete cover, development or splice length of longitudinal bars, spacing 

of longitudinal bars, and use of transverse reinforcement, are increased (ACI 

Committee 408, 2003). Tests conducted at NCSU confirmed that these 
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predictions also apply to MMFX steel. Strain gages attached to bars just outside 

the splice region indicated an increase in stress as confinement and splice length 

increased (Rizkalla 2006). While transverse reinforcement limits the progression 

of splitting, thus raising the bond force needed to cause failure, tests conducted at 

UT indicate that ACI’s current code expressions underestimate effects of 

confinement (Glass, 2006). 
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3.0 Experimental Work 

In order to determine if the strength of MMFX bars can be realized with splice 

lengths at the minimum length specified in ACI 318, several tests were 

conducted. Three specimens were constructed with 12 in. splices of #5 MMFX 

bars. The amount of confinement was varied from no transverse reinforcement 

to ties at 4 in. and 2.4 in. spacing. 

3.1 Description of test setup and specimens as designed 

The beams had a span (L) of 12 ft. and a height (h) of 12 in. The test set up is 

illustrated in Figure 2 below. The splices were located in the constant moment 

region of the beams. 

 

 

 

 

 

 

Figure 2: Test Setup 

Loading the beams from underneath created compression on the bottom face of 

the beam and tension on the top face, which allowed the tensile cracks in the 

concrete to be easily viewed and marked.  

#5 MMFX bars were used for tension steel and #5 Grade 60 bars were used for 

compression steel. The compression bars helped to ensure that the specimens 
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would not fail by crushing of the concrete. Failure was intended to occur within 

the splice region as shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Plan View of Beam, Close-Up of Splice Length, and Section View for Beam C0 
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In an effort to avoid a shear failure, transverse reinforcement was added (Figure 

4) in the shear spans between the stationary supports (reactions) and the loading 

rams. Conventional Grade 60 #4 stirrups were used for transverse reinforcement, 

spaced at 5 in., as required by the maximum stirrup spacing established by ACI 

(effective depth ÷ 2). The transverse reinforcement also facilitated assembly and 

accurate placement of the longitudinal bars. 

 

 

 

 

 

 

 

Figure 4: Elevation View of Beam and 
Close-Up of Shear Span 

Three specimens were designed and tested. Details are shown in Table 1. The 

first specimen (C0) had a splice length that was unconfined and a target failure 

stress of approximately 50 ksi within the splice region. By limiting the maximum 

stress to 50 ksi, the length limit of 12 in. by ACI 318 was accommodated. Using a 

12 in. splice length and ACI 408 equations, predicted failure stress was about 59 
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ksi. The splice length remained the same for the other two beams as well. 

However, the level of confinement changed as necessary to achieve the desired 

increase in splice strength according to ACI 408. In the second beam (C1), 3 

stirrups were added in the splice length to achieve a target failure stress of about 

73 ksi. Finally, the third beam (C2) was constructed with 5 stirrups in the splice 

length so that a target failure stress of approximately 82 ksi (neglecting limitations 

on the confinement term, as discussed further in Section 4.3.3) could be realized. 

Therefore, all three beams had the same splice length, while C0 had no transverse 

reinforcement, C1 had a moderate level of confinement, and C2 had a high level 

of reinforcement. 

Beam Splice 
Length (in) 

Target Bar 
Stress* (ksi) 

Transverse 
Reinforcement 

Concrete Compressive 
Strength (psi) 

Concrete Cover (in) 
Side          Top       Bottom 

C0 12 59 None 6027 1.5 1.5 1.5 

C1 12 73 3 - #4 Stirrups 6027 1.5 1.5 1.5 

C2 12 82 5 - #4 Stirrups 6027 1.5 1.5 1.5 

Table 1: Details of Test Specimens 
*Using ACI 408 With Unlimited Confinement Term 

3.2 Construction 

Once the beam dimensions had been determined, the formwork was constructed 

using plywood, wood studs, nails and screws, and caulk to seal the joints. The 

beams for this study were constructed with two beams of similar dimensions for 

the tests conducted by Glass, as shown in Figure 5. 
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Figure 5: Formwork 

Next, the rebar cages were constructed, each consisting of a pair of 2 spliced #5 

MMFX bars and a pair of continuous #5 Grade 60 bars, connected with #4 

Grade 60 stirrups in the shear spans, as seen in Figure 6. 

 

Figure 6: Rebar Cages 

Stirrups were also placed as transverse reinforcement in the splice regions of 

beams C1 and C2, while C0 remained unconfined. Spaced at 4 in., C1 had three 

stirrups within its splice region, while C2 had five stirrups spaced at 2.4 in., as 

illustrated in Figure 7. 
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Figure 7: Close-Up of Splice Region of 
Rebar Cages 

As shown in Figure 8, strain gauges were attached to each of the four MMFX 

bars, just outside of the splice, in order to monitor the steel stresses. 

 

Figure 8: Close-Up of Strain Gauges 

Once the rebar cages were completed, bar chairs were attached to the tension 

side of the cages and they were placed in the forms, tension side down (bottom-

cast bars). Next, the concrete was placed and finished, as illustrated in Figure 9. 

Concrete cylinders were also made so that the compressive strength of the 

concrete could be monitored, so that the beams could be tested when the 

concrete reached design strength. 

              

Figure 9: Placement of Concrete and 
Freshly Finished Beams 

C1 C2 
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The setup described in Section 3.1 can be seen in Figure 10. 

 

Figure 10: Test Setup 

Once the concrete in the beams had gained enough strength, they were removed 

from the formwork, rotated so that the tension side faced up, and placed in the 

setup for testing. The strain gauges were connected to a data acquisition system 

and the rams were attached to a hydraulic pump. Load cells underneath the rams 

were also attached to the data acquisition system, and loading of the specimens 

was controlled by observing a load development curve on a computer monitor. 

An extensometer that had been placed underneath the beam was also connected 

to the data acquisition system so that deflection at midspan could be measured. 

3.3 Testing 

Load was applied to the specimens until cracking was observed on the tension 

side of the beams. While the load was held constant, cracks were traced, and 

pictures were taken. Loading continued in this fashion, with pauses after 

approximately 1 kip increments for crack tracing and measurement and for visual 

documentation. When the load approached the predicted failure stress in the 

spliced bars, loading was continuous until failure occurred. Pictures were taken 

after failure (Figure 12) and spalled concrete was used to measure actual cover 

dimensions. Dimensions were nearly identical to design nominal values.  
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4.0 Test Results and Interpretation 

4.1 Results of #5 MMFX tests completed in this study 

After the three beams had been tested, the measured strain in each of the spliced 

MMFX bars, the applied load, and displacement of the beams at midspan was 

compiled. Using equations of equilibrium and compatibility, this measured data 

was used to determine the stress in the MMFX bars at failure. The measured 

failure stresses were then compared to predicted failure stress calculated from 

ACI 408 and ACI 318 equations (found in Appendices A and B, respectively), as 

summarized in Table 2 below.  

Beam Confinement Term 
ACI 408               ACI 318 

Measured fs (ksi) Computed fs (ksi) 
ACI 408          ACI 318 

Measured/Computed 
ACI 408                     ACI 318 

C0 2.90* 2.90 2.90* 2.50 73 59* 59 72* 62 1.25* 1.25 1.02* 1.18 

C1 4.00* 4.00 4.47* 2.50 78 73* 73 111* 62 1.08* 1.08 0.71* 1.26 

C2 4.73* 4.00 5.52* 2.50 84 82* 73 137* 62 1.02* 1.15 0.61* 1.35 

Table 2: Results of #5 MMFX Beam Tests 

*Confinement term not limited in calculation (see Section 4.3.3) 

Additional data of interest includes crack widths within and near the splice 

regions, as well as the mode of failure that was observed during testing, and the 

condition of the concrete bearing area of the specimens after failure occurred. 

Photographs of the bearing area of C0 and C1 are shown in Figure 11 below. 

  

Figure 11: Close-Up of Bearing Area 

C0 C1 

db 

db 
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Discussed further in Section 4.3.3, the concrete bearing areas of beams C0 and 

C1 differ physically due to different modes of failure. Whereas C0 retained 

indentations, left from the deformations of the rebar, the indentations in C1 have 

been crushed away.   

The crack patterns of each beam also differ, as described in Section 4.3.3. Shown 

in Figure 12, C0 had longitudinal “splitting” cracks on the top (top splitting) and 

sides (side splitting) of the beam, as well as “v-shaped” cracking near the ends of 

the splices at the corners of the beams. These types of crack patterns indicate a 

splitting failure. 

 

 

 

Figure 12: Close-Up of Cracking Within 
Splice Region of C0 

Interestingly, the crack patterns of beam C1 displayed only some of the 

characteristic splitting cracks that were seen with C0. As seen in Figure 13 below, 

v-shaped cracks formed at the end of one of the splices. In addition, very little 

side or top splitting was observed.  

 

 

C0 

SPLICE LENGTH 
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Figure 13: Close-Up of Cracking Within 
Splice Region of C1 

Finally, C2 displayed the fewest crack patterns associated with splitting failures. 

Very few longitudinal splitting cracks were seen on the top of the beam (Figure 

14) and there was no side splitting or v-shaped cracking observed.  

 

 

Figure 14: Close-Up of Cracking Within 
Splice Region of C2 
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C2 

C1 
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4.1 Results of #5 MMFX tests (Glass, 2007) 

Throughout the 2006-2007 school year, other tests involving #5 MMFX bars 

were completed by Greg Glass, a Master’s student working under Dr. James Jirsa, 

at the University of Texas at Austin. While all of the #5 MMFX specimens tested 

by Greg Glass have unconfined splice regions, other parameters were varied, 

such as splice length and concrete cover; a summary of these results is provided 

below in Table 3. 

ld (in) cso (in) csi (in) Cb (in) Tested fs (ksi) Predicted fs (ksi) 

ACI 408      ACI 318 

Tested/Predicted 

ACI 408      ACI 318 

33 1.00 1.000 0.75 80 81 108 0.99 0.74 

44 1.00 1.000 0.75 91 101 144 0.90 0.63 

18 3.50 3.750 1.25 88 79 87 1.11 1.02 

25 3.50 3.750 1.25 110 101 120 1.09 0.92 

15 3.50 3.750 2.00 97 86 75 1.13 1.28 

20 3.50 3.750 2.00 120 107 101 1.12 1.19 

Table 3: Results of #5 MMFX Beam Tests 
(Glass, 2007) 

4.3 Interpretation of results 

By comparing the measured failure stresses to those predicted by code equations 

(shown in Tables 2 and 3), several interesting trends were noticed and will be 

discussed separately. Members with unconfined splices are analyzed first, 

followed by splice length and the effects of transverse reinforcement within the 

splice region. Finally, the overall accuracy of predicted failure stresses will be 

compared for ACI 318 and ACI 408 procedures. The differences between code 

equations will be addressed to help explain the results.  

4.3.1 Unconfined splices 

For unconfined splices, both ACI 318 and ACI 408 were conservative in 

predicting failure stresses when splice lengths were less than 25 in. and a cover of 

at least 1.25 in. was provided. That is, the predicted stress at failure was always 
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lower than measured. With longer splices (over 25 in.), and small concrete cover, 

predicted values were higher than measured. This was especially true for ACI 318 

values. As splice lengths increased, measured stress levels were only 61% of the 

predicted values. In short, the tests conducted suggest that long splice lengths of 

#5 MMFX bars with small concrete cover should not be used without transverse 

reinforcement. Since smaller diameter bars are typically used for small members 

or slabs in structural applications where concrete covers and transverse 

reinforcement are minimal, increasing splice length to achieve stresses that would 

take advantage of high-strength steel is not warranted. 

4.3.2 Splice length 

While ACI limits design stresses to 80 ksi, the test results provided in Table 3 

indicate that all tested unconfined splice lengths of 15 inches or more yielded 

values from 80 ksi up to 120 ksi. However, not all of the predicted values within 

this category of moderate splice lengths were conservative, due to the varying 

amounts of concrete cover and lack of transverse reinforcement within the splice 

length. While ACI 318 resulted in values that exceeded measured values by as 

much as 37%, ACI 408 values exceed measured values by 10% or less. 

Interestingly, the equation for failure stress in ACI 408 contains an explicit 

strength reduction factor (φ) of at most 0.92; application of this factor would 

result in lower predicted values and ultimately would result in conservative 

estimates for all of the #5 specimens tested within the scope of this project. This 

suggests that MMFX steel may not need to be limited to 80 ksi when moderate 

splice lengths are used in conjunction with appropriate φ factors. On the other 

hand, strength reduction factors have been built into the ACI 318 equation to 

make the code more conservative. Unfortunately, this was not demonstrated in 

this series of tests. Instead, ACI 318 equations resulted in unconservative values 

despite the implicit factors of safety. In addition, ACI 318 contains an adjustment 

factor (ψs) in the calculation of failure stress that is intended to reflect more 



 

20 

favorable performance of bars of #6 size and smaller. This ψs factor allows an 

increase in the predicted value of stress (or a decrease in splice length). However, 

the results of specimens C0, C1, and C2 suggest that the use of such a factor is 

inappropriate when designing short splices with #5 MMFX bars, as it further 

increases the expected strength. Even when the ψs factor was left out of the 

failure stress computations, unconservative values of stress resulted for these 

three beams when the confinement term was not limited. 

4.3.3 Transverse reinforcement 

In an effort to investigate the change in splice strength of MMFX bars when the 

amount of transverse reinforcement changes, specimens C0, C1, and C2 were 

constructed with nearly identical parameters, varying only in the number of 

stirrups placed within their splice regions.  

As expected, the addition of transverse reinforcement to the splice region allowed 

the beams to carry larger loads, and therefore higher failure stresses in the splice. 

Seen in Figure 15, the three beams had nearly identical deflections until maximum 

loading. After this point, increasing the number of stirrups in the splice region 

resulted in larger deflections as the confined beams began to rely on the 

transverse reinforcement for additional strength. 
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Figure 15: Load-Deflection Curves for 

Beams C0, C1, and C2 

Due to the moderate amount of concrete cover and small bar diameter, the 

confinement term used in calculating the predicted failure stress began at a high 

value of 2.9 for C0, which is above the limit of 2.5 for ACI 318. With the 

introduction of and increase in transverse reinforcement, this confinement term 

grew larger, as is summarized in Table 4.  

 

Beam 

Confinement Term:  (cb + Ktr) 
                                 db 

ACI 408                               ACI 318 

C0 2.90*† 2.90† 2.90* 2.50 

C1 4.00* 4.00 4.47* 2.50 

C2 4.73* 4.00 5.52* 2.50 

Table 4: Confinement Terms for 
Predicting Failure Stresses 

                          Note: limiting confinement terms are 2.5 (ACI 318) and 4 (ACI 408)  
                                    (values above limit suggest that pullout failure is likely) 

*indicates that the confinement term is not limited 

†indicates that a splitting failure is likely 

In addition to contributing to the equations for predicted stress levels, this 

confinement term is also intended to reflect the mode of failure. The limits of 4.0 

C0 

C1 

C2 
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for ACI 408 and 2.5 for ACI 318 indicate that confinement terms below these 

limits will result in a splitting failure, whereas pullout failure will occur when the 

limits are exceeded. An explanation of why confinement terms differ between 

codes will be discussed first, followed by the accuracy to which each code 

predicts the mode of failure and the conservativeness of resulting failure stress 

predictions. 

As seen in Table 4 above, the confinement terms calculated by the ACI 318 

equation increase more rapidly than those calculated by ACI 408, even though 

the limit of the confinement term in ACI 318 is lower than that of ACI 408. This 

is attributed to the calculation of Ktr for each code (equations can be found in 

Appendices A and B). In ACI 408, Ktr is a function of the square root of the 

concrete compressive strength (fc 
½), whereas ACI 318 states that Ktr is a function 

of the strength of the transverse reinforcement (fyt). Because stirrups are typically 

made of Grade 60 steel (fyt = 60 ksi) and normal ranges of concrete are around 5 

ksi, increases in the amount of transverse reinforcement will result in much larger 

values of Ktr when ACI 318 is used instead of ACI 408. In fact, concrete 

compressive strengths of at least 12.5 ksi must be used in order to achieve 

comparable values of Ktr for both codes when the number and spacing of stirrups 

remains constant. These proportionally larger increments of Ktr create larger 

confinement term values, and subsequently result in higher predicted failure 

stresses than ACI 408 predicts. 

Although ACI 318 predicted pullout failures for all three of the beams, ACI 408 

predicted a splitting failure for specimen C0 and a pullout failure for C2. The 

confinement term calculated with ACI 408 was 4.0 for C1, which is the predicted 

transition zone between splitting and pullout failures. Interestingly, C1 

demonstrated a few signs of splitting just prior to failing in a pullout mode. 

Characteristics of these modes of failures can be viewed in Figures 12-14 above. 

Specimen C0 displayed longitudinal “splitting” cracks within the splice region and 
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v-shaped cracking at the ends of the splice region during testing and failed in 

splitting as a few chunks of concrete cover popped off the beam. In contrast, C2 

had very few splitting cracks and no v-shaped cracks during testing and failed in 

pullout when the bearing area of the concrete against the bar deformations was 

unable to carry any more stress from the MMFX rebar. Demonstrating 

characteristics of both modes of failure, C1 displayed a couple of splitting cracks 

and v-shaped cracks just before failing in pullout. Although no concrete cover 

spalled off the specimen, a few segments were loose enough to pry off for 

analysis of the bearing area. As seen in Figure 11 above, the concrete bearing area 

of C0 remained intact with well-defined indentations where the ribs of the 

MMFX bars had once been, whereas the bearing area of C1 was largely destroyed 

as the rebar exerted excessive forces on the concrete, crushing the concrete ridges 

as failure occurred. Overall, ACI 408 was much more accurate in terms of 

predicting the mode of failure. 

With the actual and limited confinement terms calculated for each specimen, the 

predicted failure stresses were determined for C0, C1, and C2. Although a 

designer would remain under the limiting value for the confinement term when 

calculating this stress level, it is interesting to compare tested stress values to 

predicted stresses that are not limited in their confinement terms. Both codes 

yielded conservative predictions when no transverse reinforcement was used.  

While ACI 408 was 25% overconservative, ACI 318 was closer to the measured 

failure stress for specimen C0. When stirrups were present within the splice 

region, values computed using ACI 408 were less than measured stresses for all 

beams, regardless of whether or not the confinement term was limited. Values 

using ACI 318 were less than measured failure stresses when the term was limited 

and exceeded measured failure stresses when the limit was not applied.  

The data suggests that when designing beams reinforced with MMFX that have 

short splice lengths containing stirrups, the limit on the confinement term in ACI 
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318 must be applied. However, this data also implies that applying the ACI 318 

upper limit when small bars and moderate cover are used results in a design that 

may be quite conservative. Additionally, as transverse reinforcement increased, 

the failure stresses predicted by ACI 318 became increasingly less accurate. In 

general, for beams C0, C1, and C2, ACI 408 values of stress at failure were always 

conservative although the ACI 408 equation was more accurate for confined 

splices. Likewise, ACI 318 was conservative for all three specimens when the 

confinement limit was applied, although the accuracy of its computed stress 

values decreased significantly as transverse reinforcement increased.  

4.3.4 Overall Accuracy 

Resulting data from the tested specimens suggest that when designing the splice 

strength of beams reinforced with #5 MMFX bars, ACI 408 reflects the effect of 

cover and confinement better than ACI 318. When appropriate factors and 

limitations are applied, both codes generally provided safe predictions of failure 

stresses within the splice region, while the accuracy of each method differed as 

parameters, such as splice length, concrete cover, and amount of transverse 

reinforcement within the splice, varied. ACI 318 was most accurate and 

conservative when no transverse reinforcement was present within the splice 

region. On the other hand, the code predicted values of failure stress that were 

increasingly inaccurate when stirrups were introduced. In general, ACI 408 

estimated failure stresses more accurately and safely, but were most conservative 

for splices with no transverse reinforcement. In addition, ACI 408 gave a better 

indication of mode of failure (splitting or pullout), especially when stirrups were 

introduced to the splice region. The confinement term used in ACI 408 better 

reflects the actual benefit of additional reinforcement. Because both methods 

estimated failure stresses that became less accurate as transverse reinforcement 

was increased, this series of tests suggest that after a certain amount of transverse 
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reinforcement is provided, additional reinforcement does not result in a 

proportional increase in splice strength.    
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5.0 Application to Practice 

5.1 Design Recommendations 

Based on the data provided by the conducted tests, it is recommended that 

members with spliced #5 MMFX longitudinal bars be designed by the ACI 408 

method when transverse reinforcement is included within the splice region, as 

ACI 408 yielded safe estimates of bar strength and was more accurate than ACI 

318 for the splices in this study. Designing for higher stress levels more accurately 

within short splice lengths results in a safe and efficient reduction in the area of 

steel required, thus taking advantage of high-strength steel while minimizing cost. 

For applications where confinement will not be included within the length of the 

spliced bars, it is suggested that ACI 318 may result in a more accurate design 

than ACI 408 would provide. Using the overconservative estimates provided by 

ACI 408 for unconfined splices may result in a design that requires more steel 

than is actually necessary to withstand target stresses. This would be wasteful and 

uneconomical design.  

In addition, it is recommended that the confinement limit of ACI 408 (4.0) be 

applied in the design of confined or unconfined splices, as test results have 

shown that including additional transverse reinforcement does not provide a 

proportional increase in splice strength. 
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6.0 Summary and Conclusions 

After testing three specimens containing spliced #5 MMFX longitudinal bars of 

varying levels of confinement, it was found that the values of splice strength 

predicted by the ACI 408 method were as safe as those estimated by ACI 318. 

Additionally, ACI 408 typically returned predicted values that were more accurate 

than ACI 318, especially when transverse reinforcement was present within the 

splice length. Attributed to a confinement term that better reflects the actual 

benefit of additional reinforcement, this suggests that higher targeted stress levels 

may be designed for more accurately with the ACI 408 method than when 

designing with ACI 318. However, testing has also shown that after a certain 

amount of transverse reinforcement has been added to a splice, a proportional 

increase in splice strength can no longer be realized.  
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Appendix A: Equations Established by ACI 408R-03 

A.1 Chapter 1 – Bond Behavior 

1.4 – Notation 

Ab = area of bar being developed or spliced 

Atr = area of each stirrup or tie crossing the potential plane of splitting adjacent  

          to the reinforcement being developed, spliced, or anchored 

c = spacing or cover dimension = cmin + db/2 

cb = bottom concrete cover for reinforcing bar being developed or spliced 

cmax = maximum (cb, cs) 

cmin = minimum (cso, cb, csi + db/2) 

cs = minimum (cso, csi + 0.25”) 

csi = ½ of the bar clear spacing 

cso = side concrete cover for reinforcing bar 

db = diameter of bar 

f’c = specified compressive strength of concrete 

fs = stress in reinforcing bar 

fy = yield strength of steel being developed or spliced 

       *taken as fs,failure 

fyt = yield strength of transverse reinforcement 

Ktr = transverse reinforcement index = (0.52 trtdAtr/sn)f’c
½ 

ld = development or splice length 

n = number of bars being developed or spliced 

Rr = relative rib area of the reinforcement 

        *taken as 0.0727 (Glass, 2006) 

s = spacing of transverse reinforcement 

td = 0.78db + 0.22 

tr = 9.6Rr + 0.28 
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α = reinforcement location factor  

β = coating factor  

λ = lightweight aggregate concrete factor  

ω = 0.1(cmax/cmin) + 0.9 ≤ 1.25 

A.2 Chapter 4 – Design Provisions 

4.2 – ACI 408.3 

Confinement term = (cω + Ktr)/db ≤ 4.0 

4.3 – Recommendations by ACI Committee 408 

Equation (4-11a): ld/db = {(fy/φf’c¼) – 2400ω)αβλ}/[76.3{(cω + Ktr)/db }]  
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Appendix B: Equations Established by ACI 318-05 

B.1 Chapter 2 – Notation and Definitions 

2.1 – Code Notation 

Ab = area of an individual bar 

Atr = total cross-sectional area of all transverse reinforcement within spacing s  

          that crosses the potential plane of splitting through the reinforcement  

          being developed 

b = width of compression face of member 

cb = smaller of (a) the distance from center of a bar or wire to nearest concrete  

        surface, and (b) one-half the center-to-center spacing of bars or wires being  

        developed 

db = nominal diameter of bar 

f’c = specified compressive strength of concrete 

fs = calculated tensile stress in reinforcement at service loads 

fy = specified yield strength of reinforcement 

       *taken as fs,failure 

fyt = specified yield strength of transverse reinforcement 

h = overall thickness or height of member 

Ktr = transverse reinforcement index 

l = span length of beam 

ld = development length in tension of deformed bar  

n = number of bars 

s = center-to-center spacing of transverse reinforcement 

λ = modification factor related to unit weight of concrete 

ψe = factor used to modify development length based on reinforcement coating 

ψs = factor used to modify development length based on reinforcement size 
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ψt = factor used to modify development length based on reinforcement location 

B.2 Chapter 12 – Development and Splices of Reinforcement 

12.2 – Development of Deformed Bars and Deformed Wire in Tension 

12.2.1: ld ≥ 12” 

Equation (12-1): ld =    (3fyψtψeψsλdb)  _ 

                                 40f’c
½{(cb + Ktr)/db}  

Confinement term = (cb + Ktr)/db ≤ 2.5 

Equation (12-2): Ktr =  Atrfyt_ 
                                   1500sn 

 

B-2 



 

 

 


